Fractional Fokker-Planck equation with tempered α-stable waiting times: langevin picture and computer simulation.

نویسندگان

  • Janusz Gajda
  • Marcin Magdziarz
چکیده

In this paper we introduce a Langevin-type model of subdiffusion with tempered α-stable waiting times. We consider the case of space-dependent external force fields. The model displays subdiffusive behavior for small times and it converges to standard Gaussian diffusion for large time scales. We derive general properties of tempered anomalous diffusion from the theory of tempered α-stable processes, in particular we find the form of the fractional Fokker-Planck equation corresponding to the tempered subdiffusion. We also construct an algorithm of simulation of sample paths of the introduced process. We apply the algorithm to approximate solutions of the fractional Fokker-Planck equation and to study statistical properties of the tempered subdiffusion via Monte Carlo methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudo-spectral ‎M‎atrix and Normalized Grunwald Approximation for Numerical Solution of Time Fractional Fokker-Planck Equation

This paper presents a new numerical method to solve time fractional Fokker-Planck equation. The space dimension is discretized to the Gauss-Lobatto points, then we apply pseudo-spectral successive integration matrix for this dimension. This approach shows that with less number of points, we can approximate the solution with more accuracy. The numerical results of the examples are displayed.

متن کامل

Option Pricing in Subdiffusive Bachelier Model

The earliest model of stock prices based on Brownian diffusion is the Bachelier model. In this paper we propose an extension of the Bachelier model, which reflects the subdiffusive nature of the underlying asset dynamics. The subdiffusive property is manifested by the random (infinitely divisible) periods of time, during which the asset price does not change. We introduce a subdiffusive arithme...

متن کامل

Numerical Methods for SPDEs with Tempered Stable Processes

We develop new probabilistic and deterministic approaches for moment statistics of stochastic partial differential equations with pure jump tempered α-stable (TαS) Lévy processes. With the compound Poisson (CP) approximation or the series representation of the TαS process, we simulate the moment statistics of stochastic reaction-diffusion equations with additive TαS white noises by the probabil...

متن کامل

Fractional Fokker-Planck equations for subdiffusion with space- and time-dependent forces.

We derive a fractional Fokker-Planck equation for subdiffusion in a general space- and time-dependent force field from power law waiting time continuous time random walks biased by Boltzmann weights. The governing equation is derived from a generalized master equation and is shown to be equivalent to a subordinated stochastic Langevin equation.

متن کامل

7 N ov 2 00 8 epl draft Parameters of the fractional Fokker - Planck equation

We study the connection between the parameters of the fractional Fokker-Planck equation, which is associated with the overdamped Langevin equation driven by noise with heavytailed increments, and the transition probability density of the noise generating process. Explicit expressions for these parameters are derived both for finite and infinite variance of the rescaled transition probability de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 82 1 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2010